Locally Refined Multigrid Solution of the All-Electron Kohn–Sham Equation
نویسندگان
چکیده
منابع مشابه
Locally Refined Multigrid Solution of the All-Electron Kohn-Sham Equation.
We present a fully numerical multigrid approach for solving the all-electron Kohn-Sham equation in molecules. The equation is represented on a hierarchy of Cartesian grids, from coarse ones that span the entire molecule to very fine ones that describe only a small volume around each atom. This approach is adaptable to any type of geometry. We demonstrate it for a variety of small molecules and ...
متن کاملMultigrid for Locally Refined Meshes
A two-level method for the solution of nite element schemes on locally reened meshes is introduced. The upper bound on the condition number implies, in some cases, mesh-independent convergence, as is veriied numerically for a diiusion problem with discontinuous coeecients. The discontinuity curves are not necessarily aligned with the coarse mesh; indeed, numerical applications with ten levels o...
متن کاملMultigrid solution of the Poisson - Boltzmann equation
A multigrid method is presented for the numerical solution of the linearized Poisson-Boltzmann equation arising in molecular biophysics. The equation is discretized with the finite volume method, and the numerical solution of the discrete equations is accomplished with multiple grid techniques originally developed for two-dimensional interface problems occurring in reactor physics. A detailed a...
متن کاملHigh Accuracy Multigrid Solution of the 3d Convection-diiusion Equation
We present an explicit fourth-order compact nite diierence scheme for approximating the three dimensional convection-diiusion equation with variable coeecients. This 19-point formula is deened on a uniform cubic grid. Fourier smoothing analysis is performed to show that the smoothing factor of some relaxation techniques with our scheme is smaller than 1. We further design a parallelization-orie...
متن کاملHigh accuracy multigrid solution of the 3D convection±diusion equation
We present an explicit fourth-order compact ®nite dierence scheme for approximating the three-dimensional (3D) convection±diusion equation with variable coecients. This 19-point formula is de®ned on a uniform cubic grid. Fourier smoothing analysis is performed to show that the smoothing factor of certain relaxation techniques used with the scheme is smaller than 1. We design a parallelizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2013
ISSN: 1549-9618,1549-9626
DOI: 10.1021/ct400479u